JUNE 2012

PIPELINE is a community newsletter published by the Lakeseide Water District.

WATER DISTRICT PRESIDENT WINS CITIZEN OF THE YEAR AWARD

Bruce Robertson, President of the Board of Directors of the Lakeside Water District was presented with the Citizen of the Year Award by the Lakeside Chamber of Commerce earlier this month.

Under Bruce's leadership the L.W.D. has the lowest rates in the county by a substantial margin. A study in 2005 showed that each customer in Lakeside saved in excess of \$140 per year in water costs compared to the rest of the county. Those savings have increased significantly each year and a conservative estimate is that every customer saved more than \$200 this year. During his tenure on the board, the District has won the Golden Watchdog Award from the San Diego County Taxpayer's Association for the lowest water rates in 1998, and was the runner up for the award for local government efficiency in 1997. The District was also nominated for the Golden Watchdog for completing а reorganization of the District which included a detachment from the Padre Dam Water District and a consolidation with the Riverview Water District in which Bruce was very actively involved. The reorganization, which was the most complex ever completed in San Diego County, has saved Lakeside residents millions of dollars.

Bruce has been actively involved in the community for 35 years:

1977: Two-term Charter Member of Lakeside Planning Group.

1980–present: President, Eucalyptus Hills Landowner's Association.

1995–present: Lakeside Water District Director.

1999: Co-founder, along with his wife Sally, of a river park: "Lakeside – A River Runs Through It".

2000: Charter member and vice president of the Lakeside River Park Conservancy.

2009–2012: Member of the Upper San Diego River Improvement Project (USDRIP). Bruce was instrumental in securing funding for the new Lakeside Fire District main fire station and headquarters facility.

2010: Co-founder of the Eucalyptus Hills Fire Safety Council.

Bruce has also worked on many other Lakeside community projects including brush clearing, tree plantings, and Sycamore Canyon preservation.

Congratulations Bruce for receiving this well-deserved award!

LAKESIDE WATER DISTRICT'S GENERAL MANAGER, ROBERT COOK, RETIRES

General Manager Robert (Bob) Cook has retired after 32 years as general manager of Lakeside Water District. Bob saw many changes over the years, the largest being the consolidation of Riverview Water District, the detachment from Padre Dam MWD and the rejoining of the San Diego County Water Authority. These changes set the course for the District to save millions of dollars. Bob's mission was to keep Lakeside's water rates lowest in the county, which he accomplished year after year. We thank Mr. Cook for his service to the District and the community.

Bob Cook and Lakeside Water District's new General Manager, Brett Sanders

LAKESIDE WATER DISTRICT CONSUMER CONFIDENCE REPORT

Test Results from Calendar Year 2011

(Este informe contiene informacion muy importante sobre su agua potable. Traduzcalo o hable con alguien que lo entienda bien.)

PARAMETERS	UNITS	STATE OR FEDERAL MCL [MRDL]	PHG (MCLG) [MRDLG]	STATE DLR	RANGE AVERAGE	LAKESIDE WELLS	HELIX PLANT	SKINNER Plants	
Percent State					Range	NA	6-52%	3-36%	
Project Water	%	NA	NA	NA	Average	NA	20%	24%	
PRIMARY STANDA	RDS: Mandatory H	lealth-related Stan	dards						
LARITY:									MAJOR SOURCES IN DRINKING WATER:
Combined Filter	NTU	0.3			Highest	.28	.05	.09	
Effluent Turbidity	%	95 (a)	NA	NA	% < 0.35	100 %	100 %	100 %	Soil runoff
NICROBIOLOGICAL:									
Total Coliform	Distribution System-wid	e			Range	0-3.7%	ND	ND	
Bacteria (b)	%	5.0	(0)	NA	Average	0.63%	ND	ND	Naturally present in the environment
	Distribution System-wid		()		Range	0.0	0.0	0.0	
E. coli	(c)	(c)	(0)	NA	Average	ND	ND	ND	Human and animal fecal waste
ORGANIC CHEMICALS:	(0)	(0)	(0)	101	menage	110	ne	110	
tondantic citemicals.					Pango	ND	81-85	ND	Residue from water treatment process; natural deposits erosion
Al		1000	(00	50	Range				Residue nom water treatment process, natural deposits erosion
Aluminum (d)	ppb	1000	600	50	Highest RAA	ND ND 1 2	83	ND	
					Range	ND-1.2	ND-2.2	ND	Natural deposits erosion; glass and electronics production wastes
Arsenic	ppb	10	0.004	2	Highest RAA	0.3	ND	ND	
					Range	170	NT	NT	Oil and metal refineries discharge; natural deposits erosion
Barium	ppb	1000	2000	100	Average	85	NT	NT	
Flouride (e)	ppm	2.0	1	0.1	Control Range		0.7-1.3	0.7-1.3	Water additive
Treatment-related					Optimal Level		0.8	0.8	
					Range	.1533	0.6-1.0	0.7-0.9	Lakeside has (naturally occurring) Flouride from erosion of natural deposits
					Average	0.31	0.7	0.8	
					Range	ND	ND	ND	1
Nitrate (as N)	ppm	10	10	0.4	Highest RAA	ND	ND	ND	Runoff/leaching from fertilizer use; septic tank/sewage; natural deposits eros
ADIOLOGICALS:	FF				J				
Gross Alpha					Range	3.4-9.4	ND-4.5	ND-3	1
Particle Activity	pCi/L	15	(0)	3	Average	6.3	ND-4.5	ND ND	Erosion of natural deposits
,	pci/L	15	(0)	5	5	ND	ND		
Gross Beta	<i>C</i> : <i>I</i>	50	(0)		Range			ND-5	Development of the state of the state
Particle Activity (f)	pCi/L	50	(0)	4	Average	ND	ND	ND	Decay of natural and man-made deposits
					Range	2.4-8.9	ND-1	ND-2	
Uranium	pCi/L	20	0.43	1	Average	5.4	1	1	Erosion of natural deposits
ISINFECTION BY-PROD	UCTS, DISINFECTANT RE	SIDUALS, AND DISINFECT	ION BY-PRO	DUCTS PR	ECURSORS (g):				
Total Trihalomethanes		Distribution System-wide			Range	17.3-83.7	29.9-68		
(TTHM) (g)	ppb	80	NA	1	Average	48.3	48.1		By-product of drinking water chlorination
Haloacetic Acids (five)		Distribution System-wide			Range	3.3-28.4	5.4-24		
(HAA5) (g)	ppb	60	NA	1	Average	11.8	11.8		By-product of drinking water chlorination
		Distribution System-wide			Range	.30-3.02	0.1-3.0		
Total Chlorine Residual	ppm	[4.0]	[4.0]	NA	Highest RAA	1.65	1.8		Drinking water disinfectant added for treatment
DBP Precursors Control	pp	[[Range	NA	П	Π	o many rate as netant added for a carrier
(TOC)	ppm	TT	NA	0.30				Π	Various natural and man-made sources
. ,	ppin	11							
ECONDART STAN	DADDE Aasthatis	Ctondoude	11/1	0.50	Average	NA	TT		
	IDARDS: Aesthetic	Standards	na	0.50					
AL : (1)					Range	ND	81-85	ND	Residue from water treatment process; natural deposits erosion
Aluminum (d)	IDARDS: Aesthetic	Standards 200	600	50	Range Highest RAA	ND ND	81-85 83	ND ND	Residue from water treatment process; natural deposits erosion
		200	600	50	Range Highest RAA Range	ND ND 190-230	81-85 83 59-88	ND ND 62-83	
Aluminum (d) Chloride					Range Highest RAA	ND ND 190-230 210	81-85 83	ND ND	Residue from water treatment process; natural deposits erosion
Chloride	ppb ppm	200	600 NA	50 NA	Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0	81-85 83 59-88 74 1	ND ND 62-83 72 1	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence
	ppb	200	600	50	Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0	81-85 83 59-88 74	ND ND 62-83 72	Residue from water treatment process; natural deposits erosion
Chloride	ppb ppm	200	600 NA	50 NA	Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0	81-85 83 59-88 74 1	ND ND 62-83 72 1	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence
Chloride	ppb ppm	200	600 NA	50 NA	Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0	81-85 83 59-88 74 1 1	ND ND 62-83 72 1 1	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence
Chloride Color	ppb ppm Units	200 500 15	600 NA NA	50 NA NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0	81-85 83 59-88 74 1 1 1	ND ND 62-83 72 1 1 3-24 9	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials
Chloride Color Odor Threshold (h)	ppb ppm Units TON	200 500 15 3	600 NA NA NA	50 NA NA 1	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400	81-85 83 59-88 74 1 1 1 1 .0 680-840	ND ND 62-83 72 1 1 3-24 9 390-840	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials
Chloride Color	ppb ppm Units	200 500 15	600 NA NA	50 NA NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200	81-85 83 59-88 74 1 1 1 1.0 680-840 750	ND ND 62-83 72 1 1 3-24 9 390-840 630	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice
Chloride Color Odor Threshold (h) Specific Conductance	ppb ppm Units TON μS/cm	200 500 15 3 1600	600 NA NA NA NA	50 NA NA 1 NA	Range Highest RAA Range Highest RAA Range Highest RAA Average Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240	81-85 83 59-88 74 1 1 1 1.0 680-840 750 79-160	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials
Chloride Color Odor Threshold (h) Specific Conductance Sulfate	ppb ppm Units TON	200 500 15 3	600 NA NA NA	50 NA NA 1	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203	81-85 83 59-88 74 1 1 1 1 1.0 680-840 750 79-160 126	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids	ppb ppm Units TON μS/cm ppm	200 500 15 3 1600 500	600 NA NA NA NA NA	50 NA NA 1 NA 0.5	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180	81-85 83 59-88 74 1 1 1 0 680-840 750 79-160 126 350-500	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice
Chloride Color Odor Threshold (h) Specific Conductance Sulfate	ppb ppm Units TON μS/cm	200 500 15 3 1600	600 NA NA NA NA	50 NA NA 1 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897	81-85 83 59-88 74 1 1 1 1 1 680-840 750 79-160 126 350-500 425	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS)	ppb ppm Units TON µS/cm ppm ppm	200 500 15 3 1600 500 1000	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20	81-85 83 59-88 74 1 1 1 1 1 1 680-840 750 79-160 126 350-500 425 0.03-0.10	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a)	ppb ppm Units TON μS/cm ppm ppm NTU	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897	81-85 83 59-88 74 1 1 1 1 1 680-840 750 79-160 126 350-500 425	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07	81-85 83 59-88 74 1 1 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .0520 .07 .07	81-85 83 59-88 74 1 1 1 1 680-840 75-00 425 0.03-0.10 0.05 ND	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07	81-85 83 59-88 74 1 1 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .0520 .07 .07	81-85 83 59-88 74 1 1 1 1 680-840 75-00 425 0.03-0.10 0.05 ND	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey THER PARAMETE	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .0520 .07 .07	81-85 83 59-88 74 1 1 1 1 680-840 75-00 425 0.03-0.10 0.05 ND	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 ND ND	81-85 83 59-88 74 1 1 1 1 1 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey THER PARAMETE HEMICAL:	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i):	600 NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 ND ND ND 200-260	81-85 83 59-88 74 1 1 1 1 1 1 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND ND	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring	200 500 15 3 1600 500 1000 5	600 NA NA NA NA NA	50 NA NA 1 NA 0.5 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 ND ND ND 200-260 240	81-85 83 59-88 74 1 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND ND	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND 71-110 89	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity	ppb ppm Units TON µS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i):	600 NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 ND ND ND ND 200-260 240 52.2-70.1	81-85 83 59-88 74 1 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND ND ND 100-110 105 120-140	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND ND ND ND ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influuence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) DERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey THER PARAMETE HEMICAL:	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i):	600 NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 ND ND ND ND 200-260 240 52.2-70.1 59.7	81-85 83 59-88 74 1 1 1 1 1 0.0 80-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND ND ND ND 100-110 105 120-140 125	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND ND ND ND ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity Boron	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i): NA NA	600 NA NA NA NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA NA 100	Range Highest RAA Range Highest RAA Range Highest RAA Range Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 12000 136-240 203 624-1180 897 .0520 .07 ND ND ND ND 200-260 240 52.2-70.1 59.7 100-120	81-85 83 59-88 74 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND ND ND ND 100-110 105 120-140 125 48-55	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND ND ND ND ND 29-50	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity	ppb ppm Units TON µS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i):	600 NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Range Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 .07 .07 .07 .07 .07 .07 .07 .07 .0	81-85 83 59-88 74 1 1 1 1 1 1 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 0.03-0.10 0.05 ND ND ND ND 100-110 105 120-140 125 48-55 52	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 0.05 ND ND ND ND ND ND ND ND ND ND ND ND ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity Boron	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i): NA NA	600 NA NA NA NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA NA 100	Range Highest RAA Range Highest RAA Range Highest RAA Range Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 12000 136-240 203 624-1180 897 .0520 .07 ND ND ND ND 200-260 240 52.2-70.1 59.7 100-120	81-85 83 59-88 74 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 ND ND ND ND ND 100-110 105 120-140 125 48-55	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND ND ND ND ND 29-50	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity Boron	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i): NA NA	600 NA NA NA NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA NA 100	Range Highest RAA Range Highest RAA Range Highest RAA Range Range Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 .07 .07 .07 .07 .07 .07 .07 .07 .0	81-85 83 59-88 74 1 1 1 1 1 1 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 0.03-0.10 0.05 ND ND ND ND 100-110 105 120-140 125 48-55 52	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 0.05 ND ND ND ND ND ND ND ND ND ND ND ND ND	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity Boron Calcium	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i): NA NA NA	600 NA NA NA NA NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA NA 100 NA	Range Highest RAA Range Highest RAA Range Highest RAA Range Average Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 ND ND ND 200-260 240 52.2-70.1 59.7 100-120 110 NA	81-85 83 59-88 74 1 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.05 0.03-0.10 0.05 0.03-0.10 0.05 0.03-0.10 0.05 0.03 0.10 0.05 0.03 0.10 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.03 0.010 0.05 0.010 0.05 0.03 0.010 0.05 0.00 0.05 0.00 0.05 0.00 0.010 0.05 0.00 0.010 0.05 0.00 0.010 0.05 0.00 0.00	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 ND ND ND ND ND ND ND ND ND ND ND ND S0 50	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff
Chloride Color Odor Threshold (h) Specific Conductance Sulfate Total Dissolved Solids (TDS) Turbidity (a) EDERAL UNREGULATED List 1 - Assessment Monit List 2 - Screening Survey DTHER PARAMETE HEMICAL: Alkalinity Boron Calcium	ppb ppm Units TON μS/cm ppm ppm NTU CONTAMINANTS MONITO toring ERS ppm	200 500 15 3 1600 500 1000 5 RING RULE (UCMR2) (i): NA NA NA	600 NA NA NA NA NA NA NA NA NA NA NA	50 NA NA 1 NA 0.5 NA NA NA 100 NA	Range Highest RAA Range Highest RAA Range	ND ND 190-230 210 ND-1.0 <1.0 ND-1.0 <1.0 1000-1400 1200 136-240 203 624-1180 897 .05-20 .07 .07 .07 .07 .07 .07 .07 .07 .07 .0	81-85 83 59-88 74 1 1 1 1 1 0 680-840 750 79-160 126 350-500 425 0.03-0.10 0.03-0.10 0.05 0.03-0.00 0.05 0.03-0.00 0.05 0.03-0.00 0.05 0.03-0.00 0.05 0.03-0.00 0.05 0.03-0.00 0.05 0.03-0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05	ND ND 62-83 72 1 1 3-24 9 390-840 630 78-150 110 300-460 380 0.04-0.08 0.05 	Residue from water treatment process; natural deposits erosion Runoff and leaching from natural deposits; seawater influence Naturally occurring organic materials Naturally occurring organic materials Substances that form ions in water; seawater influeenice Runoff and leaching from natural deposits; industrial wastes Runoff and leaching from natural deposits; seawater influence Soil runoff

(as Aggressiveness Index)	AI	NA	NA	NA	Average	12.2	NA	NA	
					Range	410-630	220-310	100-220	_
Hardness	ppm	NA	NA	NA	Highest RAA	536	220	160	Municipal and industrial waste discharges
					Range	45-60	21-22	13-20	
Magnesium	ppm	NA	NA	NA	Highest RAA	52	22	16	
					Range	7.1-7.3	7.8-7.9	7.8-8.5	-
рН	Units	NA	NA	NA	Average	7.23	7.9	8.2	
					Range	3.0-4.0	4.0	3.0-3.8	
Potassium	ppm	NA	NA	NA	Highest RAA	3.5	4.0	3.4	
					Range	75-147	66-80	54-74	
Sodium	ppm	NA	NA	NA	Highest RAA	120	73	64	
					Range	NA	2.0-3.9	1.8-2.7	
TOC	ppm	TT	NA	0.30	Highest RAA	NA	3.2	2.2	Various natural and man-made sources
					Range	5.31-14.8	NA	ND	_
Vanadium	ppb	NA	NL=50	3	Average	8.93	NA	ND	Naturally-occurring; industrial waste discharge
N-Nitrosodimethylamine					Range	NA	ND-0.003	ND-0.004	By-product of drinking water chloramination; industrial p
(NDMA)	ppt	NA	3	2	Range	NA	ND	ND	Industrial processes

LEAD AND COPPER TESTING: Number of Sample Sites = 30. The 90th Percentile Levels = ND for Lead and .13 ppm for Copper. Number of sites above action level of 15 ppb Lead and 1.3 ppm Copper = 0. Lead and Copper tested for in June 2010.

ABBREVIATIONS AND FOOTNOTES

ABBREVIATIONS	NTU Nephelometric Turbidity Units
Al Aggressiveness Index	P or ND Positive or Not Detected
AL Action Level	pCi/L picoCuries per Liter
CFU Colony-Forming Units	PHG Public Health Goal
DBP Disinfection By-Products	ppb parts per million or micrograms liter (μg/L)
DLR Detection Limits for Reporting	ppm parts per million or milligrams per lieter (mg/L)
MCL Maximum Contaminant Level	ppq parts per quadrillion or picograms per liter (pg/L)
MCLG Maximum Contaminant Level Goal	ppt parts per trillion or nanograms per liter (ng/L)
MRDL Maximum Residual Disinfectant Level	RAA Running Annual Average
MRDLG Maximum Residual Disinfectant Level Goal	SISaturation Index (Langelier)
NNitrogen	TOC Total Organic Carbon
NANot Applicable	TON Threshold Odor Number
NDNot Detected	TT Treatment Technique
NL Notification Level	μS/cm microSiemen per centimeter or micromho per centimeter (μmho/cm)

FOOTNOTES

(a) The turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1 NTU at any time. Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance. The averages and ranges of turbidity shown in the Secondary Standards were based on the treatment plant effluent.

(b) Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform-positive.

- (c) E. coli MCL: The occurrence of two consecutive total coliform-positive samples, one of which contains E. coli, constitutes an acute MCL violation. The MCL was not violated.
- (d) Aluminum has both primary and secondary standards.
- (e) MWD, Helix and Lakeside were in compliance with all provisions of the State's Fluoridation System Requirements.
- (f) The gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.
 (g) MWD, Helix, and Lakeside were in compliance with all provisions of the Stage 1 Disinfectants/Disinfection By-Products (D/DBP) Rule. Compliance was based on the RAA.
- (h) Metropolitan utilizes a flavor-profile analysis method that can detect odor occurrences more accurately.
- (i) Helix data collected over four guarters in 2008. MWD Data collected in November 2008.
- (j) Chromium VI reporting level is 0.03 ppb.

(k) AI <10.0 = Highly aggressive and very corrosive water. AI > 12.0 = Non-aggressive water. AI (10.0 - 11.9) = Moderately aggressive water.

LAKESIDE WATER DISTRICT (619) 443-3805

BOARD OF DIRECTORS President: Bruce Robertson Vice President: Steve Johnson

> Directors: Frank Hilliker Pete Jenkins Eileen Neumeister

General Manager: Brett Sanders

Our Board meets at the District office on the first Tuesday of each month at 5:00 p.m.

Bill Payment Options

Online: Credit card and electronic check payments may be paid online at *www.lakesidewaterdistrict.com*.

Autopay: Pay automatically from your checking account. Sign up online *www.lakesidewaterdistrict.com*.

By Phone: Credit card or electronic check payments may be placed using our automated phone system by calling (619) 443-3805, extension 3.

Drop Box: Payments may be placed in the black drop box in front of the office.

In Person: Cash payments may be paid in our office on business days, between 8:00am and 5:00pm.

With each method, you will need your account number as it appears on your bill.

CONSUMER CONFIDENCE REPORT: Educational Information

processes

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturallyoccurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Lakeside Water District's groundwater source is the Santee-El Monte Basin, a groundwater source for many in our community. The basin provides good water quality that has small amounts of iron and manganese which we remove with a specially designed treatment plant located at our Administration and Operations facility at 10375 Vine Street, Lakeside. A source water assessment detailing potential sources of contamination completed in January 2010 is available for review upon request at the District office.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lakeside Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Drinking Hotline or by visiting the government site: www.epa.gov/safe water/lead.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activates.

In order to ensure that tap water is safe to drink, USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water posses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791. If you should have any questions about the CCR or water quality in general, please call Lakeside Water District at 619-443-3805.

PRESRT STD U.S. POSTAGE PAID ESCONDIDO, CA PERMIT 605

10375 Vine Street Lakeside, CA 92040-2440