JUNE 2021

PIPELINE is a community newsletter published by the Lakeside Water District.

LAKESIDE'S WATER SUPPLY AND THE UPPER SAN DIEGO RIVER BASIN

Windmills and shallow wells were once the only way to get water here in the Lakeside area. Increasing demand though, required many changes over the years, moving away from windmills, to using motorized pumps and then from groundwater to surface water and the famous wooden flume from Lake Cuyamaca to the treated water pipelines from the north.

When Lakeside Water District was formed 1924 as an Irrigation District, groundwater and delivery from the Cuyamaca Flume were our only sources. In the early 1940's as the community expanded, Lakeside Water District (District) teamed up with eight other agencies to form the San Diego County Water Authority (WA) to bring Colorado River water to the county. This change occurred in part because of World War II, but also because of drought and the lack of sufficient water for a growing region.

Lakeside lies within the El Cajon Rancho one of the original Mexican Land Grants, which included the El Cajon Valley and was one of the largest land grants in California at 48,799 acres. Lakeside was established in 1886, and soon after the Lakeside Inn was built the area began to flourish. Lakeside was a resort destination as well as a train transfer point to horse drawn carriages for travel east and north to Julian. The area historically had been prime agricultural land, as early residents used groundwater and water delivered from the Cuyamaca Flume Company to grow crops and raise cattle.

In the 1920s, the City of San Diego also pumped water from the Upper San Diego River Basin to serve the growing City, but growth soon outgrew supply, and city engineers were looking how to develop surface water supplies and storage reservoirs. The City built the El Capitan Reservoir in the early 1930s and followed up with San Vicente Reservoir in 1946 which abruptly changed how water was able to be delivered to the East County and into the City. The opening of San Vicente Reservoir coincided with the completion of the first aqueduct bringing Colorado River water into the County.

Additional pipelines quickly followed and the population grew exponentially with the abundance of low cost water. As has been the story of Southern California over time, drought reared up again and again over the years. Finally, during the drought of the late 1980's the District decided that is was time to dust off the groundwater supply and start pumping again.

For well over 130 years the basin has maintained a healthy groundwater supply for the community, and so importantly this resource continues to be used to supplement our purchased water supply. The District protects our groundwater source and wants the community to know that every piece of trash or chemical waste that is disposed of properly helps to maintain the water quality of the basin. It's a very important part of our ability to keep our rates as low as possible, and to be able to continue to utilize the precious resource available right here in our community.

LAKESIDE WATER DISTRICT CONSUMER CONFIDENCE REPORT

Test Results from Calendar Year 2020

(Este informe contiene informacion muy importante sobre su agua potable. Traduzcalo o hable con alguien que lo entienda bien.)

		STATE	PHG (MCLG)	STATE	RANGE	LAKESIDE	HELIX	SKINNER	
PARAMETER	UNITS	[MRDL]	[MRDLG]	DLR	AVERAGE	WELLS	PLANT	PLANT	MAJOR SOURCES IN DRINKING WATER
Percent State					RANGE	NA	NR	0-84%	
Project Water	%	NA L DELATED CTAN	NA	NA	Average	NA	NR	32%	Lakeside Water District's major water source is
CLARITY	KT HEALT	1-KELATED STAT	IDARDS						SUCWA-treated surface water via Helix water District
Combined Filter	NTU	0.3			HIGHEST	0.22	0.16	0.09	
Effluent Turbidity	%	95 (a)	NA	NA	% < 0.3 NTU	100%	100%	100%	Soil runoff
MICROBIOLOGICAL					D	•			
Iotal Coliform Bacteria (b) Distribution System-wide	04	5.0	(0)	NA	AVERACE	0	0	NA	Naturally present in the environment
E. coli	70	5.0	(0)	INA	RANGE	ND	070	NA	Human and animal fecal waste
Distribution System-wide	(c)	(c)	(0)	NA	AVERAGE	ND	0%	NA	
INORGANIC CHEMICALS									
Aluminum (Al) (d)		1000	(00	50	RANGE	ND	ND-200	ND-200	Residue from water treatment process; erosion of natural deposits
	php	1000	000	50	RANGE	ND ND	ND	ND	Frosion of natural denosits, glass and electronics production wastes
Arsenic (As)	ppb	10	0.004	2	HIGHEST RAA	ND	ND	ND	
					RANGE	132-202	NR	ND	Oil and metal refineries discharge; erosion of natural deposits
Barium (Ba)	ppb	1000	2000	100	AVERAGE	177	NR	ND	
Flouride (e) Treatment-related	ppm	2.0	1	0.1	OPTIMAL LEVEL			NK	Water additive; Lakeside Water District has naturally occuring fluoride from erosion of natural denosits
					RANGE	0.27-0.45	0.6-0.8	0.6-0.9	
					AVERAGE	0.34	0.7	0.7	
					RANGE	1.7-2.4	ND	ND	Runoff and leaching from fertilizer usage; septic tanks and sewage;
Nitrate (as N)	ppm	10 (as N)	10 (as N)	0.4	HIGHEST RAA	2.1	ND	ND	natural deposits erosion
Gross Alpha					RANGE	3 9-7 5	5 3-8 0	ND-3	Erosion of natural deposits
Particle Activity	pCi/L	15	(0)	3	AVERAGE	5.7	6.5	ND	
Gross Beta					RANGE	ND	NR	ND-5	Decay of natural and man-made deposits
Particle Activity (f)	pCi/L	50	(0)	4	AVERAGE	ND	NR	ND	Product of a structure of the sector
Ilranium	n(i/l	20	0.43	1	AVERACE	1.2-4./	1.4-5.4	ND-2	Erosion of natural deposits
DISINFECTION BY-PRODUCTS, DISINFECTA	NT RESIDI	JALS, AND DISI	NFECTION BY-P		PRECURSORS (a)	J.4 Lakeside resu	د. Its for distributi	on only	
Total Trihalomethanes (TTHM) (g) (l)					RANGE	9.8-47	13.9-46	13-24	By-product of drinking water chlorination
Distribution System-wide	ppb	80	NA	1	HIGHEST LRAA	45	30	23	
Haloacetic Acids (five) (HAA5) (g) (l) Distribution System wide	nnh	60	NA	1	RANGE	1-9.6	3.5-23.9	3.5-12	By-product of drinking water chlorination
Total Chlorine Residual	php	00	NA	1	RANGE	14-23	9.6	0.5 NA	Drinking water disinfectant treatment
(Chloramine)	ppm	[4.0]	[4.0]	NA	RAA	1.9	2.1	NA	
DBP Precursors Control					RANGE	NA	NR	19-26	Various natural and manmade sources
(TOC)								117 210	
	ppm		NA	0.30	AVERAGE	NA	NR	2.3	
SECONDARY STANDARDS: AEST	ppm IETIC STAN	TT IDARDS (contam	NA inants with an aster	0.30 ISK EXCEEDED T	AVERAGE HE SECONDARY STANDAR RANGE	NA D) 145-312	NR 85-85	2.3	Runoff/Jeaching from natural denosits: seawater influence
SECONDARY STANDARDS: AESTE	ppm IETIC STAN ppm	TT IDARDS (contam 500	NA INANTS WITH AN ASTER NA	0.30 ISK EXCEEDED T NA	AVERAGE he secondary standar Range Average	NA D) 145-312 221	NR 85-85 85	2.3 81-92 86	Runoff/leaching from natural deposits; seawater influence
Chloride	ppm ETIC STAN ppm	TT IDARDS (contam 500	NA INANTS WITH AN ASTER NA	0.30 ISK EXCEEDED T NA	AVERAGE he secondary standar Range Average Range	NA D) 145-312 221 1-4	NR 85-85 85 ND	81-92 86 2	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials
Chloride	ppm IETIC STAN ppm Units	TT DARDS (CONTAM 500 15	NA INANTS WITH AN ASTER NA NA	0.30 ISK EXCEEDED T NA NA	AVERAGE HE SECONDARY STANDAR RANGE AVERAGE RANGE AVERAGE	NA D) 145-312 221 1-4 2.3 ND	NR 85-85 85 ND ND	81-92 86 2 2	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h)	ppm IETIC STAN ppm Units TON	TT IDARDS (CONTAM 500 15 3	NA NANTS WITH AN ASTER NA NA	0.30 ISK EXCEEDED T NA NA	AVERAGE HE SECONDARY STANDAR RANGE AVERAGE RANGE RANGE AVERAGE	NA D) 145-312 221 1-4 2.3 ND ND	NR 85-85 85 ND ND ND ND	2.3 81-92 86 2 2 2 2 2 2 2	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials
Chloride Color Odor Threshold (h)	ppm IETIC STAN ppm Units TON	TT DARDS (CONTAM 500 15 3	NA NANTS WITH AN ASTER NA NA NA	0.30 ISK EXCEEDED T NA NA 1	AVERAGE HE SECONDARY STANDAR RANGE AVERAGE RANGE AVERAGE RANGE RANGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200	NR 85-85 85 ND ND ND ND 530-912	81-92 86 2 2 2 2 2 796-956	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance	ppm IETIC STAN ppm Units TON µS/cm	TT DARDS (CONTAM 500 15 3 1600	NA NANTS WITH AN ASTER NA NA NA	0.30 ISK EXCEEDED T NA NA 1 NA	AVERAGE HESECONDARY STANDAR RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE AVERAGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133	85-85 85 ND ND ND ND 530-912 721	81-92 86 2 2 2 2 796-956 876	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Culfus (C0)	ppm IETIC STAN ppm Units TON µS/cm	TT DARDS (CONTAM 500 15 3 1600	NA NANTS WITH AN ASTER NA NA NA NA	0.30 SKI EXCEEDED T NA NA 1 NA	AVERAGE HE SECONDARY STANDAR RANGE AVERAGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 114	NR 85-85 85 ND ND ND S30-912 721 180-180	81-92 86 2 2 2 2 2 796-956 876 152-208	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_1)	ppm IETIC STAN ppm Units TON µS/cm ppm	TT DARDS (CONTAM 500 15 3 1600 500	NA NANTS WITH AN ASTER NA NA NA NA	0.30 sk exceeded t NA NA 1 NA 0.5	AVERAGE HE SECONDARY STANDAT RANGE AVERAGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE RANGE RANGE	NA D) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851_1004*	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572	81-92 86 2 2 2 2 2 2 796-956 876 152-208 180 472-588	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; industrial waste
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_1) Total Dissolved Solids (TDS)	ppm IETIC STAN ppm Units TON µS/cm ppm	TT DARDS (CONTAM 500 15 3 1600 500 1000	NA NANTS WITH AN ASTER NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA	AVERAGE HE SECONDARY STANDAT RANGE AVERAGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE	NA D) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397	81-92 86 2 2 2 2 796-956 876 152-208 180 472-588 530	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_4) Total Dissolved Solids (TDS)	ppm IETIC STAN ppm Units TON µS/cm ppm	TT DARDS (CONTAM 500 15 3 1600 500 1000	NA NANTS WITH AN ASTEE NA NA NA NA NA NA NA NA NA	0.30 SX EXCEEDED T NA 1 NA 0.5 NA	AVERAGE HESECONDARY STANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE RANGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9	NR 85-85 85 ND ND ND 530-912 721 180-180 180 180 258-572 397 0.0-0.07	23 81-92 86 2 2 2 796-956 876 152-208 180 472-588 530 ND	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_4) Total Dissolved Solids (TDS) Turbidity (a)	ppm IETIC STAN ppm Units TON µS/cm ppm ppm	TT DARDS (CONTAM 500 15 3 1600 500 1000 5	NA NANTS WITH AN ASTEE NA	0.30 SX EXCEEDED T NA 1 NA 0.5 NA NA	AVERAGE IE SECONDARY STANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA	23 81-92 86 2 2 2 796-956 876 152-208 180 472-588 530 ND ND	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff
(IUC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL	ppm IETIC STAN ppm Units TON µS/cm ppm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5	NA NANTS WITH AN ASTEE NA	0.30 SX EXCEEDED T NA NA 1 NA 0.5 NA NA	AVERAGE IESECONDARY STANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA	23 81-92 86 2 2 2 2 796-956 876 152-208 180 472-588 530 ND ND	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff
(IOC) SECONDARY STANDARDS: AESTH Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_4) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL	ppm IETIC STAN ppm Units TON μS/cm ppm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5	NA NANTS WITH AN ASTER NA NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA	AVERAGE IESECONDRAWSTANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE	NA p) 145-312 221 1-4 2.3 ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128	2.3 81-92 86 2 2 2 796-956 876 152-208 180 472-588 530 ND ND ND	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,)	ppm IETIC STAN ppm Units TON µS/cm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 NA	NA NANTS WITH AN ASTER NA NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA NA	AVERAGE IESECONDRAWSTANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278	NR NR 85-85 85 ND ND S30-912 721 180-180 180-180 180 258-572 397 0.0-0.07 NA 88-128 108	10 2.3 81-92 86 2 2 2 2 796-956 876 152-208 180 472-588 530 ND ND 105-121 113	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 8 NA	NA NANTS WITH AN ASTER NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA NA	AVERAGE ISSECONDARYSTANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81	NR 85-85 85 ND ND ND 530-912 721 180-180 258-572 397 0.0-0.07 NA 88-128 108 NR	1.0 2.3 81-92 86 2 2 2 2 796-956 876 152-208 180 472-588 530 ND ND 105-121 113 130 130	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 8 NA NA	NA NANTS WITH AN ASTER NA NA NA NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA NA NA	AVERAGE ISSECONDARYSTANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 112, 121	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR NR NR NR	1.0 2.3 81-92 86 2 2 2 2 796-956 876 152-208 180 472-588 530 ND ND 105-121 113 130 130 56 72	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from nat
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,) Boron (B) Calcium (Ca)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA	NA NANTS WITH AN ASTER NA NA NA NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA NA NA	AVERAGE RESECONDARY STANDAT RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR NR S7-57 57	1.0 2.3 81-92 86 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 130 56-72 62	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B) Calcium (Ca)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm NTU	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA	NA NANTS WITH AN ASTER NA NA NA NA NA NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA NA 100 NA	AVERAGE ESECONDARY STANDAT RANGE AVERAGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND	NR 85-85 85 ND ND ND 530-912 721 180-180 258-572 397 0.0-0.07 NA 888-128 108 NR NR NR NR 57-57 57 ND-26	1.0 2.3 81-92 86 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 130 56-72 62 34 4	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; billoustrial wastes Runoff/leaching from natural deposits Byproduct of drinking water chlorination; industrial processes
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B) Calcium (Ca) Perchlorate	ppm ETIC STAN ppm Units TON #S/cm ppm ppm ppm ppm ppb ppb	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 NA NA NA NA	NA NANTS WITH AN ASTER NA NA NA NA NA NA NA NA NA NA NA NA NA	0.30 SK EXCEEDED T NA NA 1 NA 0.5 NA NA NA 100 NA 20	AVERAGE ESECONDARY STANDAT RANGE AVERAGE	NA P) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND ND	NR NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR NR S7-57 57 ND-26 ND	1.0 2.3 81-92 86 2 2 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 130 56-72 62 34 34	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B) Calcium (Ca) Perchlorate	ppm ETIC STAN ppm Units TON µS/cm ppm ppm NTU ppm ppb ppb	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA	NA NANTS WITH AN ASTES NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA NA NA 100 NA 20	AVERAGE ESECONDARY STANDAT RANGE AVERAGE RANGE RANGE AVERAGE RANGE RANGE RANGE RANGE	NA NA NA NA N 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND ND ND ND ND ND ND ND ND N	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR NR S7-57 57 ND-26 ND ND-211 ND	1.0 2.3 81-92 86 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 130 56-72 62 34 34 ND ND	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial processes Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corresivity (i) Lappeliar**	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 NA NA NA NA NA NA	NA NANTS WITH AN ASTER NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA NA NA 100 NA 20 1	AVERAGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE RANGE AVERAGE RANGE RAN	NA P) 145-312 221 1-4 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND	NR NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR 57-57 57 ND-26 ND ND-0.11 ND 12 02-12 5	10 2.3 81-92 86 2 2 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 56-72 62 34 34 ND ND 12 12 12	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits Runoff/leaching from from natural deposits Runoff/leaching from from from from from from from from
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrosivity (i) Langelier** (Aggressiveness Index)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA NA	NA NANTS WITH AN ASTES NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA NA NA 100 NA 20 1 NA	AVERAGE RANGE RANGE RANGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND ND ND ND ND ND ND ND ND	NR NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR 88-128 108 NR NR S7-57 57 ND-26 ND ND-0.11 ND 12.07-12.5 12.3	1.12 2.3 81-92 86 2 2 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 56-72 62 34 34 ND ND ND 12.3-12.5 12.4	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrosivity (j) Langelier** (Aggressiveness Index)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb Al	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA NA NA	NA NANTS WITH AN ASTER NA NA NA NA NA NA NA NA NL = 1000 NA NL = 800 NA NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA NA 100 NA 20 1 NA	AVERAGE AVERAGE RANGE	NA p) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND 0.266-0.30** 500-565	NR NR 85-85 85 ND ND S30-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR S7-57 57 ND-26 ND ND-0.11 ND 12.07-12.5 12.3 92-257	1.12 2.3 81-92 86 2 2 2 2 2 2 796-956 876 152-208 152-208 472-588 530 ND ND 105-121 113 130 56-72 62 34 34 ND ND 12.3-12.5 12.4 211-273	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; iseawater influence Soil runoff/ Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; municipal and industrial waste discharges
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrossiveness Index) Hardness, Total	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb Al	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA NA NA	NA NANTS WITH AN ASTES NA NA NA NA NA NA NA NL = 1000 NA NL = 800 NA NA NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA 0.5 NA NA 100 NA 20 1 NA 20 1 NA	AVERAGE RANGE RANGE RANGE RANGE RANGE RANGE RANGE R	NA P 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND 0.266-0.30** 0.285** 5300 530	NR NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR S7-57 57 ND-26 ND ND-0.11 ND 12.07-12.5 12.3 92-257 166	12 23 81-92 86 2 2 2 2 2 2 2 2 376 152-208 180 472-588 530 ND ND 105-121 113 130 130 56-72 62 34 34 ND ND 12.3-12.5 12.4 211-273 242 242	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial processes Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; municipal and industrial waste discharges
(IUC) SECONDARY STANDARDS: AESTI SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0_1) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrosivity (i) Langelier** (Aggressiveness Index) Hardness, Total Hardness, Total	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb Al	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA NA NA	NA NANTS WITH AN ASTES NA NA NA NA NA NA NA NA NL = 1000 NA NL = 800 NA NA NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA 0.5 NA NA 100 NA 20 1 NA 20 1 NA	AVERAGE AVERAGE RANGE AVERAGE	NA NA NA NA N 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND ND ND ND ND ND ND ND ND N	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR 57-57 57 ND-26 ND ND-26 ND ND-257 12.3 92-257 166 22-22 22	12 23 81-92 86 2 2 2 2 2 2 2 2 2 2 36 876 152-208 180 472-588 530 ND ND 105-121 113 130 56-72 62 34 34 ND ND ND 12.3-12.5 12.4 211-273 242 20-26 2	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial processes Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; municipal and industrial waste discharges
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,1) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,1) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrosivity (i) Langelier** (Aggressiveness Index) Hardness, Total Magnesium (Mg)	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb ppb Al ppm nH	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 NA NA NA NA NA NA NA NA NA	NA NANTS WITH AN ASTES NA NA NA NA NA NA NA NL = 1000 NA NL = 800 NA NA NA NA NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA 0.5 NA NA 100 NA 20 1 NA 20 1 NA NA	AVERAGE AVERAGE RANGE AVERAGE	NA NA NA NA N 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 278 67-81 76 113-121 116 ND ND ND ND ND ND ND ND ND N	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR 57-57 57 ND-26 ND ND-26 ND ND-26 ND ND-257 12.3 92-257 166 22-22 22 7 9.8 A	12 23 81-92 86 2 2 2 2 2 2 2 2 2 2 2 2 2 34 105-121 113 130 130 56-72 62 34 ND ND 12.3-12.5 12.4 21-273 242 20-26 23 8 8 1	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; iseawater influence Soil runoff Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial processes Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; municipal and industrial waste discharges
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0,) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0,) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrosivity (i) Langelier** (Aggressiveness Index) Hardness, Total Magnesium (Mg) pH	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb ppb Al ppm ppb ppb	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA NA NA NA	NA NANTS WITH AN ASTES NA NA NA NA NA NA NA NL = 1000 NA NL = 800 NA NA NA NA NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA 0.5 NA NA 100 NA 20 1 NA 20 1 NA NA NA NA	AVERAGE AVERAGE RANGE	NA P 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 2240-301 2278 67-81 76 113-121 116 ND	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR 57-57 57 ND-26 ND ND-26 ND ND-26 ND ND-27 12.3 92-257 166 22-22 22 7.9-8.4 8.2	12.3 81-92 86 2 2 2 2 2 2 2 2 2 2 3876 152-208 180 472-588 530 ND ND 105-121 113 130 56-72 62 34 ND ND 12.3-12.5 12.4 20-26 23 8.1	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; seawater influence Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; municipal and industrial waste discharges
(IUC) SECONDARY STANDARDS: AESTI Chloride Color Odor Threshold (h) Specific Conductance Sulfate (S0_4) Total Dissolved Solids (TDS) Turbidity (a) OTHER PARAMETERS CHEMICAL Alkalinity (CaC0_4) Boron (B) Calcium (Ca) Perchlorate Chromium VI (i) Corrosivity (i) Langelier** (Aggressiveness Index) Hardness, Total Magnesium (Mg) pH	ppm ETIC STAN ppm Units TON µS/cm ppm ppm ppm ppm ppb ppb ppb ppb Al ppm ppb Al ppm ppb	TT DARDS (CONTAM 500 15 3 1600 500 1000 5 5 NA NA NA NA NA NA NA NA NA NA	NA NANTS WITH AN ASTES NA NA NA NA NA NA NA NL = 1000 NA NL = 800 NA NA NA NA NA NA	0.30 SK EXCEEDED 1 NA 1 NA 0.5 NA 0.5 NA NA NA 20 1 NA 20 1 NA NA NA NA NA	AVERAGE RANGE RANGE RANG	NA) 145-312 221 1-4 2.3 ND ND 1000-1200 1133 107-185 144 851-1040* 967 0.1-0.9 0.37 240-301 240-301 278 67-81 76 113-121 116 ND	NR 85-85 85 ND ND ND 530-912 721 180-180 180 258-572 397 0.0-0.07 NA 88-128 108 NR NR 57-57 57 ND-26 NR NR 57-57 57 ND-26 ND ND-26 ND ND-211 ND 12.07-12.5 12.3 92-257 166 22-22 22 7.9-8.4 8.2 4.9-4.9	ND 81-92 86 2 2 2 2 2 2 2 2 2 2 38 152-208 180 472-588 530 ND ND 105-121 113 130 56-72 62 34 ND ND 12.3-12.5 12.4 20-26 23 8.1 4.0-4.8	Runoff/leaching from natural deposits; seawater influence Naturally occuring organic materials Naturally occuring organic materials Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; iseawater influence Soil runoff Soil runoff Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial processes Byproduct of drinking water chlorination; industrial processes Industrial waste discharge; could be naturally present as well Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; municipal and industrial waste discharges Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water Runoff/leaching from natural deposits; substances that form ions in water

					Range	119-171	52-71	76-98	Runoff/leaching from natural deposits
Sodium (Na)	ppm	NA	NA	NA	Average	151	60	87	
					Range	5.63-9.31	ND-2.9	ND	Naturally occurring; industrial waste discharge
Vanadium (V)	ppb	NA	NL = 50	3	Average	6.93	ND	ND	
N-Nitrosodimethylamine (NDMA)					Range	NA	NR	4.2	Byproduct of drinking water chlorination; industrial processes
Distribution System-wide	ppt	NA	3	2	Average	NA	NR	4.2	

Levels testing for lead and copper is required every three years. | Latest test: June 2019 | Number of Sample Sites: 30 | 90th Percentile Levels: COPPER = 0.086 ppm; LEAD = 1.7 ppb Number of sites above action level of 15 ppb Lead, 1.3 ppm Copper = 0 | Number of schools served by Lakeside Water District that requested Lead sampling during the calendar year = 10

ABBREVIATIONS AND FOOTNOTES

ABBREVIATIONS

- .. Aggressiveness Index or Langelier Index AI AI Action Level CFU. . Colony-Forming Units DBP Disinfection By-Products DLR Detection Limits for Reporting Purposes MCL..... Maximum Contaminant Level MCLG...... Maximum Contaminant Level Goal MRDL Maximum Residual Disinfectant Level MRDLG Maximum Residual Disinfectant Level Goal N.....Nitrogen NA.....Not Applicable ND......Not Detected NL Notification Level
- NTU Nephelometric Turbidity Units P or ND Positive or Not Detected pCi/L picoCuries per Liter PHG Public Health Goal
- ppb parts per billion or micrograms liter (µg/L)
- ppm parts per billion or milligrams per lieter (mg/L)
- ppq parts per quadrillion or picograms per liter (pg/L)
- ppq parts per quadrillion or picograms per liter (pg, ppt parts per trillion or nanograms per liter (ng/L)
 - t parts per trillion or nanograms per liter (
- RAA Running Annual Average SI...... Saturation Index (Langelier)
- TOC...... Total Organic Carbon
- TON Threshold Odor Number
- TT...... Treatment Technique
- μS/cm microSiemen per centimeter or

micromho per centimeter (µmho/cm)

FOOTNOTES

NR Not Reported

- (a) The turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1 NTU at any time. Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance. The averages and ranges of turbidity shown in the Secondary Standards were based on the treatment plant effluent.
- (b) Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform-positive.
- (c) E. coli MCL: The MCL was not violated. (The occurrence of two consecutive total coliform-positive samples, one of which contains E. coli, constitutes an acute MCL violation.)
- (d) Aluminum has both primary and secondary standards.
- (e) MWD, Helix and Lakeside were in compliance with all provisions of the State's Fluoridation System Requirements.
- (f) The gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.
- (g) MWD, Helix, and Lakeside were in compliance with all provisions of the Stage 1 Disinfectants/Disinfection By-Products (D/DBP) Rule. Lakeside compliance was based on Distribution System RAA.
- (h) Metropolitan utilizes a flavor-profile analysis method that can detect odor occurrences more accurately.
- (i) Chromium VI reporting level is 0.03 ppb.
- (j) Highly aggressive and very corrosive water: Al <10.0 or Lagnelier Index (LI) <-2.0; Moderately aggressive water: Al (10-11.9) or LI -2.0-0.1; Non-aggressive water: Al >12.0 or LI > or to 0.
- (k) Radiological sampling is required only every third year.
- (I) Helix THM and HAA5 available upon request from Helix Water District.

DEFINITIONS

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminate Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the set to protect the odor, taste, and appearance of drinking water.-

Maximum Contaminate Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLs are set by California Environmental Protection Agency (CalEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there are no known or expected health risks. PHGs are set by the CalEPA.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health, along with their monitoring, reporting, and water treatment requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Regulatory Action Level: The concentration of a contininant which, if exceeded, triggers treatment or other recourse that a water system must follow.

BILL PAYMENT OPTIONS

The account number, as it appears on your bill, will be required for all payment methods.

Mail using the envelope provided Online www.lakesidewater.org No fee for automatic draft payments; credit card or electronic checks are also accepted.

Phone (619) 443-3805, option 3 In Person Monday-Friday 8am-5pm Lakeside Water District office, 10375 Vine Street, Lakeside.

Lakeside Water District office, 10375 Vine Street, Lakeside. **Drop Box** after hours; located in front of the office

LAKESIDE WATER DISTRICT BOARD OF DIRECTORS

 President:
 Steve Robak

 Vice President:
 Eileen Neumeister

 Directors:
 Frank Hilliker

 Pete Jenkins
 Steve Johnson

 General Manager:
 Brett Sanders

Board meetings are held at the District office the first Tuesday of each month at 5:30 p.m.

CONSUMER CONFIDENCE REPORT: Educational Information

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Lakeside Water District's groundwater source is the Santee-El Monte Basin, a groundwater source for many in our community. The basin provides good water quality that has small amounts of iron and manganese which we remove with a specially designed treatment plant located at our Administration and Operations facility at 10375 Vine Street, Lakeside. A source water assessment detailing potential sources of contamination completed in January 2010 is available for review upon request at the District office. The remainder of Lakeside Water District's water is imported from the Metropolitan Water District of Southern California and the San Diego County Water Authority. This water is treated at Metropolitan's Skinner Treatment Plant near Temecula and Helix Water District's Levy Treatment Plant. This water is a blend of water from the Colorado River System and the California State Water Project.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lakeside Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Drinking Hotline or at http://www.epa.gov/safe water/lead.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activates.

In order to ensure that tap water is safe to drink, the USEPA and the California State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water posses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If you should have any questions about the CCR or water quality in general, please call Lakeside Water District at 619-443-3805.

10375 Vine Street Lakeside, CA 92040-2440

SHERMAN RESERVOIR PROJECT UPDATE

Lakeside Water District has completed the rehabilitation of the 1.4 million gallon Sherman Reservoir. Built in the 1950s, its framed wood roof needed upgrading. In February 2021, work began to replace the original roof with an aluminum dome that will improve water quality and reduce future maintenance and operational costs.

The project is scheduled for completion in late June. The total cost was \$490,000. Our contractors for the improvements were Dexter Wilson Engineering of Carlsbad, M-Rae Engineering of Descanso, and CST Covers of Gardena.

